Silver nanoparticles cause more damage to testicular cells than titanium dioxide nanoparticles, according to a recent study by the Norwegian Institute of Public Health. However, the use of both types can affect sperm production with consequences for fertility of future generations.
Commonly used
Nanotechnology is increasingly used in consumer products, medicines and building products. The potential risks of using engineered nanoparticles need to be monitored so that the industry can develop safely.
Crosses the blood-testes barrier
Previous research has shown that nanoparticles can cross both the blood-brain barrier and blood-testes barrier in mice and rats, and are taken up by cells. This study aimed to see if silver and titanium dioxide nanoparticles had any effect on human and mice testicular cells.
The researchs found that silver nanoparticles had a toxic effect on cells, suppressing cellular growth and multiplication and causing cell death depending on concentrations and length of exposure. The effect was weaker for titanium dioxide nanoparticles, although both types did cause cell type-specific DNA damage, with possible implications on reprodution as well as human and environmental health.
The researchs found that silver nanoparticles had a toxic effect on cells, suppressing cellular growth and multiplication and causing cell death depending on concentrations and length of exposure. The effect was weaker for titanium dioxide nanoparticles, although both types did cause cell type-specific DNA damage, with possible implications on reprodution as well as human and environmental health.
“It seems that the type of nanoparticle, and not the size alone, may be the limiting factor” says Nana Asare, primary author of the study published in Toxicology.
Further study using in vivo models is needed to study the impact of nanoparticles on health.
About the study
The researchers used cells from a human testicular carcinoma cell line and testicular cells from two strains of mice, one of which serves as a representative model for human male reproductive toxicity. The cells were exposed to titanium dioxide nanoparticles (21nm) and two different sizes of silvernanoparticles (20 nm and 200nm) over different concentrations and time periods. Both sizes ofsilver nanoparticles inhibited normal cell function and caused more cell death than titanium dioxide nanoparticles. In particular, the 200 nm silver particles caused a concentration-dependent increase in DNA damage in the human cells.
Reference
Asare, N. et al Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291: 65-72 (2012)
Nano facts
|
Fonte: Health Canal