Pesquisar este blog

Translate

quinta-feira, 15 de março de 2012

Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells


Source

Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway. nana.asare@fhi.no

Abstract

Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. 

In this study, we examined effects of silver particles of nano- (20nm) and submicron- (200nm) size, and titanium dioxide nanoparticles (TiO(2)-NPs; 21nm), with emphasis on reproductive cellular- and genotoxicity. 
Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1(-/-)) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. 
The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO(2)-NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

PMID:
 
22085606
 
[PubMed - indexed for MEDLINE]


Fonte: NCBI